Triangle strings: Structures for augmentation of vertex-disjoint triangle sets
نویسندگان
چکیده
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a r t i c l e i n f o a b s t r a c t Vertex-disjoint triangle sets (triangle sets for short) have been studied extensively. Many theoretical and computational results have been obtained. While the maximum triangle set problem can be viewed as the generalization of the maximum matching problem, there seems to be no parallel result to Berge's augmenting path characterization on maximum matching (C. Berge, 1957 [1]). In this paper, we describe a class of structures called triangle string, which turns out to be equivalent to the class of union of two triangle sets in a graph. Based on the concept of triangle string, a sufficient and necessary condition that a triangle set can be augmented is given. Furthermore, we provide an algorithm to determine whether a graph G with maximum degree 4 is a triangle string, and if G is a triangle string, we compute a maximum triangle set of it. Finally, we give a sufficient and necessary condition for a triangle string to have a triangle factor.
منابع مشابه
THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G
To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کاملEvery triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable
A graph G is (a, b)-choosable if for any color list of size a associated with each vertex, one can choose a subset of b colors such that adjacent vertices are colored with disjoint color sets. This paper proves that for any integer m ≥ 1, every finite triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable.
متن کاملThe Vertex-Disjoint Triangles Problem
The vertex-disjoint triangles (VDT) problem asks for a set of maximum number of pairwise vertex-disjoint triangles in a given graph G. The triangle cover problem asks for the existence of a perfect triangle packing in a graph G. It is known that the triangle cover problem is NPcomplete on general graphs with clique number 3 [6]. The VDT problem is MAX SNP-hard on graphs with maximum degree four...
متن کاملEvaluation of Bi-objective Scheduling Problems by FDH, Distance and Triangle Methods
In this paper, two methods named distance and triangle methods are extended to evaluate the quality of approximation of the Pareto set from solving bi-objective problems. In order to use evaluation methods, a bi-objective problem is needed to define. It is considered the problem of scheduling jobs in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 114 شماره
صفحات -
تاریخ انتشار 2014